找回密码
 加入我们
搜索
      
查看: 13572|回复: 69

[显卡] 4090单卡跑满血版DeepSeek-R1,清华团队开源项目再破模型推理门槛

[复制链接]
发表于 2025-2-12 15:21 | 显示全部楼层 |阅读模式
https://news.qq.com/rain/a/20250212A04LGE00
DeepSeek-R1火遍海内外,但推理服务器频频宕机,专享版按GPU小时计费的天价成本更让中小团队望而却步。

而市面上所谓“本地部署”方案,多为参数量缩水90%的蒸馏版,背后原因是671B参数的MoE架构对显存要求极高——即便用8卡A100也难以负荷。因此,想在本地小规模硬件上跑真正的DeepSeek-R1,被认为基本不可能。

但就在近期,清华大学KVCache.AI团队联合趋境科技发布的KTransformers开源项目公布更新:

支持24G显存在本地运行DeepSeek-R1、V3的671B满血版。预处理速度最高达到286 tokens/s,推理生成速度最高能达到14 tokens/s。

其实早在DeepSeek-V2 时代,这个项目就因“专家卸载”技术而备受关注——它支持了236B的大模型在仅有24GB显存的消费级显卡上流畅运行,把显存需求砍到10分之一。
随着DeepSeek-R1的发布,社区的需求迅速激增,在GitHub盖起上百楼的issue,呼吁对其进行支持。

版本更新发布后,不少开发者也纷纷用自己的3090显卡和200GB内存进行实测,借助与Unsloth优化的组合,Q2_K_XL模型的推理速度已达到9.1 tokens/s,真正实现了千亿级模型的“家庭化”。

此外,KTransformers团队还公布了v0.3预览版的性能指标,将通过整合Intel AMX指令集,CPU预填充速度最高至286 tokens/s,相比llama.cpp快了近28倍。对于那些需要处理上万级Token上下文的长序列任务(比如大规模代码库分析)来说,相当于能够从“分钟级等待”瞬间迈入“秒级响应”,彻底释放CPU的算力潜能。
...
您需要登录后才可以回帖 登录 | 加入我们

本版积分规则

Archiver|手机版|小黑屋|Chiphell ( 沪ICP备12027953号-5 )沪公网备310112100042806 上海市互联网违法与不良信息举报中心

GMT+8, 2025-8-9 15:43 , Processed in 0.036663 second(s), 6 queries , Gzip On, Redis On.

Powered by Discuz! X3.5 Licensed

© 2007-2024 Chiphell.com All rights reserved.

快速回复 返回顶部 返回列表